
Verifying Programs under Snapshot Isolation
and Similar Relaxed Consistency Models

Ismail Kuru
Koç University, Istanbul

ikuru@ku.edu.tr

Burcu Kulahcioglu Ozkan
Koç University, Istanbul

bkulahcioglu@ku.edu.tr

Suha Orhun Mutluergil
Koç University, Istanbul
smutluergil@ku.edu.tr

Serdar Tasiran
Koç University, Istanbul

stasiran@ku.edu.tr

Tayfun Elmas 1

Google, Inc.
elmas@google.com

Ernie Cohen
Microsoft

ernie.cohen@acm.org

Abstract
We present a static verification approach for programs running un-
der snapshot isolation (SI) and similar relaxed transactional seman-
tics. Relaxed conflict detection schemes such as snapshot isolation
(SI) are used widely. Under SI, transactions are no longer guaran-
teed to be serializable, and the simplicity of reasoning sequentially
within a transaction is lost. In this paper, we present an approach
for statically verifying properties of transactional programs operat-
ing under SI. Differently from earlier work, we handle transactional
programs even when they are designed not to be serializable.

We present a source-to-source transformation which augments
the program with an encoding of the SI semantics. Verifying the
resulting program with transformed user annotations and speci-
fications is equivalent to verifying the original transactional pro-
gram running under SI – a fact we prove formally. Our encod-
ing preserves the modularity and scalability of VCC’s verification
approach. We applied our method successfully to benchmark pro-
grams from the transactional memory literature.

1. Introduction
Transactions provide a convenient, composable mechanism for
writing concurrent and distributed programs. They are used to write
shared memory programs using transactional memory (TM), pro-
grams that access a single, central database, and, more recently, but
increasingly widely, to write programs that access geo-replicated
databases. In each of these settings, a transactional execution plat-
form can provide a strong or more relaxed programming semantics.
The former simplifies program construction and verification, while
the latter provides better performance and availability. This paper
is about a technique for verifying transactional programs that op-
erate under relaxed semantics – a problem that has not yet been
addressed.

For TM and database transactions, by strong semantics we mean
atomicity and serializability of transactions. For programs operat-
ing on geo-replicated objects, we mean strong consistency of trans-
actions. For TM and database transactions, the motivation for re-
laxed semantics is performance and avoidance of frequent trans-
action aborts, while, for geo-replicated data types, the motivation
is providing availability to the objects or databases, even when the
replicas, sometimes located on mobile devices, are disconnected
(partitioned).

The best-known relaxed consistency semantics in the TM and
database domains is snapshot isolation (SI), where the entire trans-

action is not guaranteed to be atomic, but all of the read accesses
in the transaction are atomic and all the updates performed by the
transaction are atomic. Many popular databases provide SI as the
default consistency mode. Relaxed semantics (also known in TM
literature as relaxed conflict detection schemes) other than SI, such
as programmer-defined conflict detection [1], and early release of
read set entries [2] have been investigated in the database, soft-
ware and hardware transactional memory communities. For the
distributed transactional programs, relaxed consistency semantics
such as session SI [3] and parallel SI [4] have been investigated
(See per-record time line consistency [5] and prefix consistency
[6] for examples). Relaxations of strong semantics are widely used
for geo-replicated databases are variants of eventual consistency,
with additional guarantees relating different objects and the order
in which different updates are propagated to different replicas.

When a transactional execution platform provides strong con-
sistency and serializable transactions, the code of a transaction can
be treated as sequential code. This significantly simplifies writing
and verifying applications. For the increasingly common transac-
tional execution platforms with relaxed semantics, one way to re-
trieve the simplicity of sequential reasoning is to enforce serializ-
ability via additional analyses or instrumentation, e.g. by prevent-
ing or avoiding write-skew anomalies. This approach can be useful
some of the time, but, for many examples, may result in a loss of
performance or availability and defeat the purpose of relaxed se-
mantics. On platforms with relaxed semantics, much of the time, it
is the application author’s intent to implement a transactional pro-
gram that is correct, e.g.. satisfies assertions and invariants, without
enforcing strong consistency or serializability. Typically, the way
relaxed consistency exhibits itself in transactional code is in the
form of “stale reads”’ – data read by the transaction may not be
the most recent version later during the transaction, or even at the
time of the read access, in the case of geo-replicated databases. Our
verification technique is targeted at such transactional programs.

Although transactional programs operating under relaxed se-
mantics are becoming increasingly commonplace, there are cur-
rently no tools for verifying properties (assertions and invariants).
Static tools for code verification targeted at sequential programs [7–
9], and the VCC verification tool [10] for verifying concurrent C
programs have been quite successful. These tools are (when appli-
cable) thread, function and object-modular, and scale well to large
programs. For transactional platforms providing more relaxed se-
mantics such as SI or eventual consistency, these tools cannot be
used as they are not aware of transactions or relaxed consistency

1 2014/2/9

semantics. In this paper, we present a static code verification tech-
nique for transactional applications running under weak consis-
tency semantics such as SI or eventual consistency. The goal of
our technique is to provide a verification environment exactly like
that of VCC but for programs running on relaxed transactional plat-
forms. The verification approach provides scalability and modular-
ity, as VCC does, but requires programmer annotations for proce-
dure pre- and post-conditions and loops in the same way all existing
modular static code verification tools do.

In our approach, we take a transactional program and the seman-
tics of the transactional platform that provides relaxed consistency.
We produce an augmented C program with VCC annotations. The
program our approach outputs is the same (has the same structure,
etc.) as the input program, but includes an encoding of the relaxed
transactional semantics and allows exactly the executions and inter-
leavings specified by the relaxed semantics through the use of aux-
iliary variables in VCC. Our program transformation can be viewed
as augmenting the program with a high-level implementation of the
transactional platform. The transformation is designed with special
attention towards preserving the thread, function and object mod-
ularity of the verification of the sequential version of the program
in VCC. The encoding avoids inlining code that other, interfering
transactions that might be running concurrently.

To illustrate the applicability of our technique, we verified pro-
grams that were written to be correct even under relaxed trans-
actional consistency. These programs were three benchmarks from
the STAMP [11] transactional benchmarks suite and a StringBuffer
pool example. We verified using our approach and tool that these
examples satisfy application-level invariants and assertions despite
relaxed transactional semantics. The user annotations required in
each case reflected the correctness intuition in the relaxed trans-
actional case, were relaxed versions of the annotations that would
have been required had the program been running sequentially, and
did not refer to the auxiliary variables involved in our encoding. In
other words, the user was able to simply express the correctness
intuition without referring to the mechanisms implementing the
transactional semantics. Verification times for programs running
under relaxed semantics were comparable with verification times
for programs running sequentially.

Although we recognize the distinctions between different re-
laxed transaction semantics, in the rest of this paper, for brevity’s
sake, we use SI to refer to relaxed consistency models similar to SI
and “serializability” to stand for the class of transactional platforms
that provide atomic, strongly consistent, serializable transactions.

2. Motivating Example
In this section, we illustrate our approach (Figure 1) on the
Labyrinth benchmark from the STAMP benchmark suite, one of the
four benchmark programs we applied our method to. This example
is typical of the design and correctness intuition for programs that
satisfy desired assertions and invariants while operating under SI.
The Labyrinth program is correct., i.e., satisfies the desired invari-
ants and procedure post-conditions despite its executions not being
serializable. Enforcing serializability (as is typically accomplished
by enforcing conflict serializability [12]) would be an unnecessary
restriction that hurts performance.

Labyrinth follows a common parallel programming pattern.
Transactions each read a large portion of the shared data, perform
local computation and update only a small portion of the shared
data. Under conflict-serializability all concurrent transactions con-
flict and transactions can only run serially, one at a time.

As shown in 1, each concurrent transaction runs an instance of
the function FindRoute to route a wire “Manhattan-style” in a
three-dimensional grid (grid) from point p1 to point p2. Wires
are represented as paths: lists of points with integer x, y, and z

// Program invariant:
// forall int i; 0<=i && i< pathlist->num_paths
// ==> isValidPath(grid, pathsList->paths[i])

FindRoute(p1, p2) {
transaction {
1: localGridSnapshot = makeCopy(grid);
2: // Take snapshot of entire grid

3: // Local, possibly long computation
4: onePath = shortestPath(p1, p2, localGridSnapshot);

5: // Desired post-conditions of shortestPath:
6: assert(isValidPath(onePath, localGridSnapshot))
7: assert(isConnectingPath(onePath, p1, p2);
8:
9: // Register points on onePath as "taken" on grid
10: // Add onePath to pathsList
11: gridAddPathIfOK(grid, pathsList, onePath);
12:
13: // FindRoute must ensure program invariants,
14 // and the post-condition
15: // onePath in pathsList &&
16: // IsConnectingPath(onePath, p1, p2)
} }

Figure 1. Outline for FindRoute code and specification.

coordinates, where consecutive entries in the list must be adjacent
in the grid. The grid is represented as a three-dimensional array,
where each entry [i][j][k] is the unique ID of the path (wire).
A data structure pathList keeps pointers to all paths in an array.

Each execution of FindRoute(p1,p2) first takes a snapshot of
the grid (line 1) by traversing it and then performs local computa-
tion using this local snapshot to compute a path (onePath, line 4)
from p1 to p2. Observe that, during this local computation, other
executions of FindRoute may complete and modify the grid. In
other words, localGridSnapshot may be stale snapshot of grid.
SI guarantees in this example that (i) the read of the entire grid in
line 4 is atomic, (ii) that the updates to onePath and grid in line
11 are atomic, but does not guarantee that the entire transaction is
atomic.

Specification Desired properties for this program are that (i)
the grid is filled correctly by the information, and that (ii) no two
paths overlap. The latter of these is implicitly ensured because each
grid point contains a single wire ID number. The former is formally
expressed below

isValidPath(int ***grid, path_t* p) =
(forall int i; 0<= i < path->path_len ==>

p->ID == grid[p->x[i]][p->y[i]][p->z[i]])
forall int i; 0<= i < path->path_len-1 ==>
isAdjacent(p->x[i], p->y[i], p->z[i],

p->x[i+1], p->y[i+1], p->z[i+1])

FindRoutemust preserve this invariant for all paths on pathList
in addition to the post-conditions that onePath is a valid path that
connects p1 to p2 and is in pathList.

Static Verification of Sequential FindRoute: When FindRoute
is viewed as if it is running sequentially, with no interference from
other transactions, it is straightforward to verify using VCC. The
following are the key steps taken:

• We verify that the code for shortestPath (not shown) satis-
fies the post-conditions in lines 6 and 7.

• Using this fact, we verify that gridAddPathIfOK, if and when
it terminates, satisfies the program invariant (no two paths over-
lap and pathsList and grid are consistent), and the desired
post-conditions in 14.

To carry out the verification tasks above, static code verification
tools, including VCC, require the programmer to write loop invari-

2 2014/2/9

ants as annotations. The rest of the verification of function post-
conditions is carried out automatically.

Verifying FindRouteUnder SI: The verification of FindRoute
under SI rests on the key observation that the conditions listed
above for correctness of FindRoute under SI remain correct even
when thread interference as described by SI occurs. Our technique
allows us to verify that this is the case mechanically using VCC.

In a given instance of FindRoute, if gridAddPathIfOK de-
tects that onePath overlaps an existing wire, it explicitly aborts the
transaction. Instances of FindRoute that complete do so because
they have computed a path onePath that not only does not overlap
any of the wires in the initial snapshot localGridSnapshot, but
also does not overlap any of the paths added to the grid since.

The intuition behind FindRoute being correct while running
under SI is as follows:

1. SI ensures that the traversal and copying of the grid in line 1 is
carried out atomically.

2. SI ensures that the updates to pathList and grid performed
by gridAddPathIfOK are carried out atomically.

3. To verify that an atomic, terminating execution of gridAdd-
PathIfOK establishes the desired program invariant and post-
condition, it is sufficient to know that the post-conditions estab-
lished by shortestPath in lines 7 and 8 still hold at the time
gridAddPathIfOK starts running.

In our technique, we transform and augment the code for
FindRoute to obtain another C program with VCC annotations.
Verifying the resulting program in VCC amounts to checking that
(3) continues to hold under thread interleavings constrained by (1)
and (2).

Our technique accomplishes this as follows.

• The encoded program has exactly the set of thread interleavings
allowed by SI. The auxiliary variables (e.g., version numbers
for each grid element and wire, fictitious locks, etc.) and con-
straints (“assume” statements) on these variables built into the
encoded program only allow executions where all read accesses
in a transaction are carried out atomically and all write accesses
are carried out atomically. There are no other restrictions on
how the threads are interleaved.

• When VCC verifies the object and global invariants and pro-
cedure post-conditions (e.g., the FindRoute program invari-
ant or post-condition of shortestPath) in the encoded con-
current program, it checks whether they are preserved under
thread interference possible in the encoded program. Since the
encoded program (an ordinary concurrent C program) allows
exactly the interleavings specified by SI, this amounts to veri-
fying that properties of the original program running under SI
hold.

The encoded program preserves the structure of the original
program, and does not inline code from other possibly interfering
transactions.

While the exact form of the argument differs from benchmark
to benchmark and can be somewhat more complicated than above,
we have found that the argument has the following pattern:

1. The “read phase” and the “local computation phase” of the
transaction establish some conditions in terms of program vari-
ables,

2. These post-conditions remain preserved even in the presence of
interference allowed under SI.

3. These post-conditions suffice for the “write phase” to establish
the desired invariants and transaction post-condition, and

In the example above, it was trivial to argue (3) since the post-
conditions are in terms of transaction-local variables. For other
examples, these post-conditions refer to shared state which may be
mutated. The transaction remains correct as long as these mutations
do not break the properties that the “write phase” depends on. Our
tool allows the programmer to express these properties and verify
that they remain preserved under interference allowed by SI.

3. Our Approach
3.1 Preliminiaries: Transactional Programs
The user provides the code for a transaction as a C function.
The beginning and end of a transaction are indicated by calls
to the beginTrans() and endTrans() functions. We make
the committing of a transaction syntactically visible by a call to
commitTrans(t, inv) in order to allow the programmer to spec-
ify an invariant that holds when the transaction is committed. Data
shared by transactions is represented by aliasing among arguments
of functions calls representing different transactions. Unless indi-
cated otherwise, function arguments of the same type are treated as
possibly aliasing to the same address. Shared data is represented by
aliasing among arguments of functions calls representing different
transactions. Transaction are not allowed to be nested.

We define states and the transition relation of a program under
SI as follows: A global state is a tuple GS � pGlV ar,GlMem,
T toLcStsq such that

• GlV ar is the set of global variables, i.e., shared objects
(structs) that multiple transactions hold references to in GS,

• GlMem : GlV ar Ñ V al maps global variables to their
values in the memory, and

• TtoLcSts : T idÑ L keeps local states of each transaction.

The local state of a transaction t contains LcV ar, the set of
objects local to t, RSet � GlV ar (WSet � GlV ar) the set
of global variables that have been read (written) by t since the
beginning of the transaction.

An action is a unique execution of a statement by a transaction t
in a state s. An execution prefix of a program PSI is a tuple EN �
p~s, ~αq where ~α is a finite sequence of actions α0, α1, . . . , αN�1

and ~s � s0, s1, . . . , sN is a finite sequence of states such that
psi, αiq Ñ si�1 for all i N . An execution has the form:

s0
α0ÝÑ s1

α1ÝÑ s2
α2ÝÑ ...

αN�1
ÝÑ sN

The transaction consistency semantics and conflict detection
scheme, such as serial execution of transactions, conflict serializ-
ability, and SI specify which interleavings of actions from different
transactions are allowed in an execution.

3.2 SI and other Relaxed Conflict Detection
We write IdxEpαiq to refer to the index i of action αi in the exe-
cution, and TrEpαiq to refer to the transaction performing αi. To
make precise the sets of executions of a program allowed by dif-
ferent relaxed conflict-detection schemes, we define the protected
span of a shared variable x within a transaction t for a given con-
sistency modelM . Intuitively, this span is a set of indices of actions
with the property that, according to the consistency model, at none
of these indices can an update to x in shared memory take place
due to the commit action of a transactions other than t .

Definition 1. An execution E is said to obey snapshot isolation iff
for all committed transactions t, (i) all read accesses performed by
t are atomic, (ii) all write accesses performed by t are atomic, and
(iii) if t both reads and writes to a variable x , the value of x in
shared memory is not changed between the first access to x by t
and the commit action of t.

3 2014/2/9

To specify snapshot isolation in terms of spans within an execu-
tion, we first define the snapshot read span of a variable x read by
a transaction t. Let αi be the first read action (of any variable) in a
transaction t, and let αj be the last read of a variable x by t. Then,
the snapshot read span of x in t is the interval ri, js. If x is never
read in t, its snapshot read span is the empty interval. The protected
span of a variable x in snapshot isolation is defined as follows:

• If x is only read by the transaction, the protected span of x is
the snapshot read span of x.

• If x is both read and written to, then the protected span is the
interval ri, js where i is the index of the first access of the
transaction to x, and j is the index of the commit action of t.

• If x is only written to, the protected span is defined to be the
write span of x, which is the interval ri, js, where i is the index
of the first write access to x, and j is the index of the commit
action of t.

• Otherwise the protected span is empty.

Snapshot isolation requires that the protected span of each vari-
able x does not contain any commit actions by other threads that
write to x. Due to space restrictions, we omit a proof of the fact
that this formulation of SI in terms of protected spans and Defini-
tion 1 coincide.

Other related relaxed transactional semantics, such as !WAR
can be defined using the concepts of read and write spans, version
numbers, fictitious locks and assume statements in a similar way.

Relaxing Write-After-Read Conflict Detection. This semantics
specifies the executions provided by a transactional memory with
relaxed detection of conflicts using the !WAR annotation as de-
scribed in [1]. In this semantics, the programmer annotates certain
read actions to be relaxed reads. The protected span of a variable x
in t is defined as the interval ri, Idx pcommitptqqs, where αi is the
first regular (not relaxed) read action or write action accessing x as
part of t. A relaxed read of x in t is simply required to return the
result of the last write to x. Differently from serializable semantics,
in read-relaxed semantics, after a relaxed read of x by t but before
t commits other transactions are allowed to commit and update the
value of x. However, conflicting writes are never allowed between
a write access and the corresponding commit action.

3.3 Concurrency, VCC and Modular Verification
In this section, we briefly, and, due to space constraints, informally,
introduce the VCC mechanisms and conventions we make use of
in our approach. VCC allows programmers to think C structs as
objects and other base C types (int, char, double etc.,) as primitive
types. VCC allows programmer to create ghost objects or declare
ghost structs which can not modify the concrete program state but
can be used for verification tasks. ghost structs can be C structs
defined in the program or special types provided by VCC.

Each object has a unique owner at any given time. The con-
cept of ownership is one mechanism using which access to ob-
jects shared between threads is coordinated, and invariants span-
ning multiple objects are stated and maintained. Objects can be
annotated with any number of two-state transition invariants: first-
order formulas in terms of any variables.

VCC allows the introduction of ghost variables of all types,
including all C types, and more complex ones such as sets or
maps. Ghost variables are (auxiliary) history variables, and they
do not affect the execution of the program and values of program
variables.

VCC performs modular verification in the following manner.
Each function is annotated with pre- and post-conditions. Each loop
is annotated with a loop invariant. Every struct may be annotated

with two-state transition invariants. Code may also be annotated
with assertions in VCC’s first-order specification logic, in terms of
the program and ghost variables in scope. VCC then verifies the
code for one function at a time, using pre-post condition pairs to
model function calls, loop invariants to model executions of loops,
and “sequential” or “atomic” access, as described below, to model
interference from concurrent threads. In “sequential” access, the
thread accessing a variable obtains exclusive access to a variable
aVar by obtaining ownership of aVar. Another way to coordinate
access to shared variables in VCC is to mark them volatile and
to require that any state transition of the program must adhere to
the transition invariants of these objects.

3.4 Source-to-source Transformation for Simulating SI
In this section, we present our source-to-source transformation. We
have chosen to implement our verification approach in this manner
in order to expose to the users the constructs used in the encoding.
Currently, this transformation is carried out manually following
the procedure described in this section. In future work, we plan
to provide tool support for this transformation.

The input to our transformation is C program PSI . PSI contains
the program text and the correctness specifications. In VCC, these
specifications are provided as

• an invariant for user-defined data types (structs),
• desired function pre- and post-conditions, given as boolean

expressions in terms of variables in scope at function entry and
exit,

• assertions, given as boolean expressions over transaction-local
or shared variables

As explained in Section 3.1, the user can also specify a global
invariant he would like to hold at the time a transaction commits.

The output of the transformation is a program�PSI � EncodepPSIq
that will be verified using VCC. It runs under ordinary C seman-
tics and contains the kinds of VCC annotations described in Sec-
tion 3.3. We formally prove that verifying �PSI under ordinary VCC
semantics is equivalent to verifying PSI under transactional SI se-
mantics.

The encoding is obtained via a high-level modelling of the oper-
ational semantics of SI. Since only the effects of succeding transac-
tions are visible to other transactions, the high-level model does not
include mechanisms such as transaction. The transformation is de-
scribed for SI. While a simpler transformation would have sufficed
for SI, the construction we present here is necessary to generalize
to other relaxed consistency models, such as early release of read
entries, programmer-defined conflict detection, e.g. ignoring write-
after-read conflicts, and variants of eventual consistency in which
transactions may see stale data but updates by transactions are re-
quired to be atomic.
�PSI , the encoded version of a program PSI is constructed as

follows. For each global variable of type int in PSI , the encoded
program �PSI has a global variable of type PInt. For each global
int variable (a) in PSI , we denote the corresponding PInt vari-
able in �PSI by ã. When transforming the program syntactically,
we use lowercase variables a to refer to variables of type int in the
original program, and uppercase versions (A) to refer to the corre-
sponding wrapper variable of type PInt in the encoded program.
�PSI makes use of VCC statements of the form assume(φ).

A thread in a program can take a state transition by executing
assume(φ) only at a state s that satisfies φ, in which case, program
control moves on to the next statement. Interleavings disallowed by
the consistency model M are expressed as a formula ψ in terms

4 2014/2/9

of objects’ version numbers, and statements of the form assume
 ψ are used in the encoding.

Transforming data types: Each primitive C type used in the
original program is replaced by a “wrapper” struct type. This is
necessary so we can coordinate access to these variables using
mechanisms provided by VCC.

For simplicity, we present the transformation for programs that
only use int s as primitive types. In the transformation, each shared
variable of type int is replaced with a variable of type PInt as
shown below:

PInt{
int inMem; int inMemVNo;
int inTM[Trans]; int inTMVNo[Trans];
Lock lock;
_(invariant \unchanged(inMemVNo) ==> \unchanged(inMem))
_(invariant \forall int t;

\unchanged(inTMVNo[t]) ==> \unchanged(inTM[t]))
};

The “wrapper” type PInt holds the following information:

• a field inMem value that corresponds to the value of the variable
in shared memory,

• a version number inMemVNo that gets incremented atomically
each time the inMem field is written to,

• a (ghost) field inTM[Trans] which is a map from T id to
integers. inTM[t] holds the value of the transaction-local copy
of the integer

• a (ghost) field inTMVNo[Trans] which is a map from T id
to integers. inTMVNo[t] is incremented atomically with each
update of inTM[t]

• a (ghost) field lock that is used to convey to VCC when a
transaction has exclusive access to the int variable

This wrapper type has an important invariant that indicates that
a field’s value remains unchanged if its version number remains
unchanged. This invariant, along with assume statements involving
version numbers allows us to represent constraints such as the value
of a variable remaining unchanged between two accesses within a
transaction.

To implement transactional semantics, we create an instance of
the Trans struct per transaction.

Trans{
bool holding[PInt];
bool readsLockedSet[PInt];
bool writesLockedSet[PInt];

};

In the definition above PInt stands for struct Int*. Fields
of Trans are ghost maps. readSetInt and writeSetInt are
maps that store Int objects read and written to by this transaction.
localIntCopy keeps the transaction local values of Int s. If an
Int object x is neither read nor written to by this transaction then
localIntCopy[x] is null.

If there are struct declarations in the original program, Trans
contains three maps for each field of these structs used following
the same approach for Int s. The structs and their fields are flat-
tened into maps.

Transformation a transaction The transformation is described
assuming that the code has been decomposed so that each statement
accesses a global variable at most once, as is typical in transactional
applications. The code transformation makes use of a number of C
functions whose pre- and post-conditions are presented later in this
section. Due to space restrictions, we only provide highlights of the
transformation rules:

• Statements of the form beginTrans(t) remain unchanged in
the transformed version. (see pre- post-conditions of this func-
tion below)

• Statements that only assign a value val to a local variable or
a local variable to a local variable remain unchanged in the
transformation.

• Statements that create a new shared variable A of type Int are
transformed to newPInt(A). This is similar for creating new
shared variable of other types.

• Each statement l = v by transaction t that reads a global vari-
able v into local variable l is transformed to an atomically-
executed statement that performs the equivalent of the follow-
ing VCC code atomically.

assume(\forall PInt P;
trans->readSet[P] ==>

trans->inTMVNo[P] == P->inMemVNo);
l = transReadInt(trans, V);

The specifics of transReadInt are described later in this sec-
tion.

• Each statement V = l that writes the value of a local variable
l to a shared variable V is transformed to atomically-executed
statements that perform the equivalent of the following VCC
code.

assume(V->\owner == t || V->\owner == NULL);
acquireLock(V,t);
assume(V->inTMVNo[t] == V->inMemVNo);
//V has not been written to since it was read by t.
transWrite(V, l, t);

This code enforces (as per SI semantics) if V is in the transac-
tion’s read set and write set, then V have not changed since a
snapshot was taken.

• Each statement commitTrans(t, inv), is transformed to the
following atomically-executed sequence of statements:

assume(\forall PInt P;
t->lockedWritesInteger[P] ==>

P->inTMVNo == P->inMemVNo + 1);
commitTrans(t);
assert(inv);

• For each statement endTrans(t), we replace the statement
with endAndCleanTrans(t) in the encoded version.

• Each statement assert(p), where p is a boolean expression in
terms of local variables, is left as is in the encoded version. Each
boolean expression e involved in a loop invariant, and function
pre- and post-condition is transformed to a boolean expression
E, where each appearance of a global variable v is replaced with
a reference to the transaction-local copy v->inTM[t].

The functions used in the encoded program are listed below
together with their pre-conditions and post-conditions:

• beginTrans(t) creates a Trans structure for thread t. This
function has no pre-condition and has the post-condition that
the read and write sets of t and the set of variables t has
exclusive ownership of are empty, i.e.,

\forall PInt P; !t->lockedReadsInteger[P] &&
!t->writesLockSet[P] && !t->holding[P]

• acquireLock(V, t) is used to obtain exclusive access to V
by transaction t. This is accomplished by using the fictitious
(ghost) lock V->lock. Since we are verifying only succeeding
executions of transactions (and assuming that aborted transac-
tions have no visible effect), we call acquireLock in the en-

5 2014/2/9

coded program only at a state where it will successfully com-
plete. Thus, this function has the pre-condition that the global
variable V has no owner or is owned by t, and the post-condition
that the owner of V is the transaction t.

• transRelaxedRead(V,t) reads V in a transaction t. This
function does not require V to be owned by t and has the post-
condition that

t->readsLockSet[V] == true &&
V->inTM[t] == V->inMEM &&
V->inTMVMo[t] == V->inMEMVNo

• newPInt(V) is used to create a new PInt variable. This function
has the post-condition that V->owner is t. All version numbers
associated with V are initialized to 0.

• transWrite(V, l,t) writes the value of the local vari-
able l to the inMem field of V and atomically increments
v->inTMVNo[t]. If V has been read previously by t, then this
function requires that V’s version number has not changed since.
These are expressed by the pre-condition

V->\owner == t && V->inMemVNo == V->inTMVNo[t]

and the post-condition

t->writesLockSet[V] == true &&
t->inTM[t] == l &&
t->inTMVNo[t] == old(t->inTMVNo[t]) + 1

• commitTrans(t) commits a transaction by writing the up-
dates performed by the transaction into the memory. Note that a
valid execution can have only local statements (that only effect
local state) after commitTrans(t) statement until it ends the
transaction. This function is better explained by the following
pseudocode

_(atomic t {
\foreach PInt P;

if (ptrans->writesLockSet[P]) {
P->inMEM = P->inTM[t];
P->verNoInMEM = P->verNoInTM[t];

}
})

Since VCC currently does not support loops inside atomic
statements, the state update corresponding to the loop above is
expressed as the function post-condition for commitTrans.

• endAndCleanTrans(t) ends a transaction t by releasing the
locks that the transaction holds, cleaning its read and write
sets. It has the post-condition that t releases ownership of all
objects it owns, and the readLockSet, writesLockSet, and
holding are all reset to maps corresponding to empty sets.

The following theorem, the proof of which is available at
msrc.ku.edu.tr/projects/vcctm
states the soundness of our verification approach.

Theorem 1 (Soundness). Let PSI be a transactional program and
�PSI be the augmented program obtained from PSI as described
above. Then �PSI satisfies its specifications (assertions, invariants,
function pre- and post-conditions) if and only if PSI satisfies its
specifications.

It follows from this theorem that users can start with the pro-
gram P , provide the desired specifications, and additional proof
annotations. Then, to verify properties of PSI , users can follow the
(clearly automatable but not yet automated) source-to-source trans-
formation approach described in this section and obtain �PSI . Ver-

ifying the transformed specifications with the transformed annota-
tions on �PSI is equivalent to verifying the specifications of PSI , by
the soundness theorem.

The source-to-source code transformation preserves the thread,
function, and object structure of the original program. The newly-
introduced objects representing transactions are local to each thread
or transaction. All additional invariants introduced are per-object.
There is no inlining of code from other, possibly interfering trans-
actions, and the size of the transformed code is linear in the size of
the original code.

3.5 Verifying Transformed Program With VCC
In this part, we explain how verification of the transformed program
is performed on the grid example. For the grid, user provides the
program invariant both as the pre-condition and post-condition
of findRoute and specifications between lines 13-16 as post-
condition for the original program.

Generally, program pre- and post-conditions are not enough
for verification and the user may need extra ghost variables or
annotations. Especially for the loops or other code blocks enclosed
with curly parentheses, user should provide conditions about user
defined shared or local objects that are satisfied throughout the
code block and helps verification of the post-conditions. Since
findRoute does not contain such code blocks. Hence, no extra
annotation is needed.

Moreover, the user may need to provide extra annotations al-
though the function does not contain any such code blocks. These
annotations reflect the correctness intuition of the program. To our
experience with SI, user should provide a condition that holds right
after end of the read phase (after snapshot has been taken) such that
this condition is preserved although other transactions interfere and
modify data. In the grid example, assertions on lines 6,7 reflect the
correctness intuition. onePath is a valid and connecting path for
localGrid and grid when the snapshot was taken. It continues
to hold during execution although other transactions interfere and
modify grid. This information is enough for VCC to verify post-
conditions of findRoute: Since onePath is a valid and connecting
path on the localGrid and points on the onePath stays the same
in grid, onePath becomes a valid and connecting path after call
to addGridPathIfOK.

Note that the assertions added for verification on lines 6,7 do
not include variables, fields or calls to functions introduced by
the transformation. Therefore, user does not need any knowledge
about transformation and these extra program parts. This is the case
we encountered during the verification of examples. Correctness
intuition based on local and shared user variables are enough for
verification.

If the initial correctness intuition is not enough for verification
for function post-conditions, user may come up with tighter and
stricter annotations for verification of assertions or program post-
conditions until the function is verified.

4. Experiments
We applied our technique to the Genome, Labyrinth and Self-
Organizing Map benchmarks as implemented in [1] and a String-
Buffer pool example that we wrote ourselves. Of the benchmark
programs in [1], we picked these three because they made sig-
nificant use of relaxed semantics to improve performance. These
examples have pre-annotated transactional code blocks which can
be run under relaxed transactional semantics, i.e., under SI, or,
separately, using programmer-defined conflict detection as speci-
fied by !WAR annotations. All four of our examples are correct
applications but their executions are not conflict serializable. We
made precise and formally verified the correctness arguments for

6 2014/2/9

these implementations and for the StringBuffer example. Our
work makes formal the correctness arguments in the work of Titos
et al. [1] about the correctness of the transactions in the bench-
marks and provides evidence that the intuitive reasoning about why
programs can function correctly under TM relaxations can be ex-
pressed and verified systematically.

Description and code for the benchmark examples and the re-
sults of the code transformation (verified with VCC) are available
online at

http://msrc.ku.edu.tr/projects/vcctm.
For each benchmark, we wrote partial specifications and stati-

cally verified that they hold for transactional code running with the
regarding relaxed consistency semantics, starting from a VCC ver-
ification of the specifications on a sequential interpretation of the
benchmark.

struct node t { int key; node t* next; ghost Set reach;}

1 bool list_insert(list_t *listPtr,
2 node_t *node) {
3 node_t *prev, *curr = listPtr->head;
4

5 do {
6 prev = curr;
7 curr = curr->next;
8 } while (curr != NULL
9 && key > curr->key);

10 (invariant loopInv(prev, curr, head, node))
11 // loopInv(prev, curr, head, node) ==
12 // prevKey < key && prevKey < curKey
13 // && prev reachable from head
14 // && curr reachable from head
15

16 // assert(prev->next == curr);

17 node->next = curr;
18 prev->next = node;
19 return true; // key was not present
20 }

Figure 2. The insertion operation of a sorted linked list.

• Genome: Figure 2 shows the pseudocode for a linked list im-
plementation used in the Genome benchmark [11]. The code
in the figure has been simplified for ease of presentation. In
the part of this benchmark where relaxed consistency is used,
concurrent transactions insert into a shared linked list. Transac-
tions run under programmer-defined conflict detection, where
write-after-read conflicts are ignored (!WAR), i.e., do not cause
transactions to abort. Figure 3 illustrates how concurrent inser-
tions experience write-after-read (!WAR) conflicts, and how, in-
tuitively, it would be correct implementation to let an insertion
commit even though it experiences a WAR conflict. Following
[1]. the body of list insert is marked with the !WAR annota-
tion to indicate that write-after-read conflicts should be ignored.
We verify that the linked list maintains two invariants under
interference : (i) its nodes are in ascending order and (ii) linked
list is not circular. We further verify that the addNode(newNode)
Function satisfies the post-condition that the node it adds
(newNode) is reachable from the head of the linked list. The
read (traversal) phase of the addNode function finds a node
prev in the list after which newNode is to be inserted. The
assertion that prev is reachable from the head of the list and
that the appropriate place for newNode to be inserted is right
after prev is preserved despite interference caused by ignoring
write-after-read conflicts.

• SOM: In this benchmark, concurrent transactions run the learn-
ing phase of the machine learning algorithm SOM. SOM con-
tains a shared grid of which nodes are n-dimensional vectors.
The learning function solve takes an n-dimensional vector v

Write&'
A)er&'
Read'
conflict'

1' 3' 6' 9' 12' 15' 17'Head'

16'

WRITE&
READ&

5'

WRITE&

Figure 3. Sorted linked list and a write-after-read conflict.

and the grid as input, calculates the Euclidean distance of v to
each grid nodes, picks the closest one v1 and moves nodes in a
neighbourhood of v1 closer to v.

• StringBuffer In this example, a pool of StringBuffer ob-
jects are implemented as a collection. Transactions to allocate
or free a string buffer perform relaxed read on the shared col-
lection. When a transaction finds a suitable object and wants to
allocate it, it can commit ignoring other possible write opera-
tions (that allocate or free a string buffer object) on the collec-
tion. The example is written using programmer-defined conflict
detection, in particular, using !WAR semantics. We verified that
a data structure invariant and post-conditions of the Allocate
and Free functions are satisfied.

• Labyrinth: This example and its verification process was de-
scribed earlier in the paper.

We have demonstrated the applicability of our verification ap-
proach on these examples that were written without assuming se-
rializability and satisfied their specifications despite this. In each
of these examples, our encoding facilitates thread- and procedure-
modular correctness proofs that hold for an arbitrary number of
threads. Programmer annotations on encoded program makes no
reference to auxiliary encoding variables. Our experience with the
SI and !WAR relaxed consistency models, which are very similar
to other relaxed consistency models described earlier leads us to
believe that our static verification technique is a useful tool for a
programmer building applications in these settings.

5. Related work

Relaxed conflict detection.. Relaxed conflict detection has been
devised to improve concurrent performance by reducing the num-
ber of aborted transactions. Titos et al. [1] introduce and investigate
conflict-defined blocks and language construct to realize custom
conflict definition. Our work builds on this work, and provides a
formal reasoning and verification method for such programs. As we
have shown with SI and !WAR, we believe that our method can eas-
ily be adapted to support other relaxed conflict detection schemes.

Enforcing (conflict) serializability, detecting write-skew anoma-
lies. There is a large body of research on verifying or ensuring
conflict or view serializability of transactions even while the trans-
actional platform is carrying out relaxed conflict detection [13–18].
In this work, we enable programmers to verify properties of trans-
actional code on SI even when executions may not be serializable.
This allows the user to prove the correctness of and use transac-
tional code that allows more concurrency.

Linearizability:. One way to allow low-level conflicts while pre-
serving application-level guarantees is to use linearizability as the
correctness criterion [19]. To prove linearizability of a transactional
program P running under SI, one could use the encoded program

7 2014/2/9

we construct, rP as the starting point in a linearizability or other
abstraction/refinement proof. In this work, we have chosen not to
do so for two reasons. First, abstract specifications with respect to
which an entire program is linearizable may not exist or may be
hard to write. Second, programmers would like to verify partial
specifications such as assertions into their program in terms of the
concrete program variables in scope. Verifying linearizability does
not help the programmer with this task.

Encodings, source-to-source transformations.. As a mechanism
for transforming a problem into one for which there exist effi-
cient verification tools, source-to-source code transformations are
widely-used in the programming languages and software verifica-
tion communities. The work along these lines that is closest to ours
in spirit involves verifying properties of programs running under
weak memory models by transforming them into programs that
run under sequential consistency semantics [20, 21]. Our work also
makes use of a source-to-source translation in order to transform
the problem of verifying a transactional program running under
SI to a generic C program that can be verified using VCC. Our
transformation results in only a linear increase in code size. While
we perform an encoding for representing different semantics from
these studies, our encoding itself has some features that distinguish
it from encodings devised for different verification purposes. Dur-
ing the transformation, the thread, object and procedure structure of
the original program is preserved. No inlining of extra code model-
ing interference from other transactions is involved. We also have
the practically important advantage that while verifying his code
under SI, the user does not have to provide extra annotations in
terms of the extra auxiliary variables in the encoded program.

In this paper, we build on our earlier work [22] where we
present a program abstraction that allows us to verify that the
abstracted transactional program running under relaxed conflict
detection is serializable. The verification approach we followed
in [22] was different that it required a user-provided abstraction
and was only partially mechanically checked. The approach we
provide in this work is more general and the entire verification of
the transactional program running under SI is carried out within the
static verification tool VCC and the soundness of the verification
approach is formally proven (Theorem 1).

6. Future Work
We plan to automate the transformations described in our paper.
We also plan to and to apply our approach to verifying transac-
tional programs running under other relaxed consistency models
and eventual consistency.

References
[1] Titos, R., Acacio, M.E., Garca, J.M., Harris, T., Cristal, A., Unsal, O.,

Valero, M.: Hardware transactional memory with software-defined
conflicts. In: High-Performance and Embedded Architectures and
Compilation (HiPEAC’2012). (January 2012)

[2] Skare, T., Kozyrakis, C.: Early release: Friend or foe? In: Workshop
on Transactional Memory Workloads. (Jun 2006)

[3] Daudjee, K., Salem, K.: Lazy database replication with snapshot
isolation. In: Proceedings of the 32nd international conference on Very
large data bases, VLDB Endowment (2006) 715–726

[4] Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage
for geo-replicated systems. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ACM (2011) 385–400

[5] Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bo-
hannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts:
Yahoo!’s hosted data serving platform. Proceedings of the VLDB En-
dowment 1(2) (2008) 1277–1288

[6] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer,
M.J., Hauser, C.H.: Managing update conflicts in bayou, a weakly
connected replicated storage system. 29(5) (1995) 172–182

[7] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming
system: an overview. In: Proceedings of the 2004 international con-
ference on Construction and Analysis of Safe, Secure, and Interoper-
able Smart Devices. CASSIS’04, Berlin, Heidelberg, Springer-Verlag
(2005) 49–69

[8] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B.,
Stata, R.: Extended static checking for Java. In: PLDI ’02, New York,
NY, USA, ACM Press (2002) 234–245

[9] Fähndrich, M.: Static verification for code contracts. In: Proceed-
ings of the 17th international conference on Static analysis. SAS’10,
Berlin, Heidelberg, Springer-Verlag (2010) 2–5

[10] Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc:
Contract-based modular verification of concurrent C. In: ICSE-
Companion 2009. (may 2009) 429 –430

[11] Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stan-
ford transactional applications for multi-processing. In: IISWC ’08:
Proc. of The IEEE International Symposium on Workload Characteri-
zation. (September 2008)

[12] Papadimitriou, C.: The theory of database concurrency control. Com-
puter Science Press (1986)

[13] Dias, R.J., Distefano, D., Seco, J.C., Lourenço, J.: Verification of
snapshot isolation in transactional memory Java programs. In Noble,
J., ed.: ECOOP. Volume 7313 of Lecture Notes in Computer Science.,
Springer (2012) 640–664

[14] Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of
serializability. SIGPLAN Not. 45 (January 2010) 31–42

[15] Alomari, M., Fekete, A., Röhm, U.: A robust technique to ensure seri-
alizable executions with snapshot isolation DBMS. In: Proceedings of
the 2009 IEEE International Conference on Data Engineering. ICDE
’09, Washington, DC, USA, IEEE Computer Society (2009) 341–352

[16] Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snap-
shot databases. In: Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. SIGMOD ’08, New York,
NY, USA, ACM (2008) 729–738

[17] Adya, A.: Weak consistency: a generalized theory and optimistic
implementations for distributed transactions. PhD thesis (1999)
AAI0800775.

[18] Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Mak-
ing snapshot isolation serializable. ACM Transactions on Database
Systems (TODS) 30(2) (2005) 492–528

[19] Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst. 12(3) (1990)
463–492

[20] Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in
TSO analysis. In: Computer Aided Verification, Springer (2011) 99–
115

[21] Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software veri-
fication for weak memory via program transformation. In Felleisen,
M., Gardner, P., eds.: ESOP. Volume 7792 of LNCS., Springer (2013)
512–532

[22] Subasi, O., Elmas, T., Cristal, A., Harris, T., Tasiran, S., Tutos-Gil, R.,
Unsal, O.: On justifying and verifying relaxed detection of conflicts in
concurrent programs. In: In WoDet’12

8 2014/2/9

